

Sea Ice Deformation in a Coupled Sea Ice-Ocean Model and from Satellite Remote Sensing: Comparison and Model Adaptation

Gunnar Spreen, Ron Kwok, Dimitris Menemenlis, An T. Nguyen

Jet Propulsion Laboratory, California Institute of Technology

Outline

Comparison of observed RGPS SAR sea ice deformation fields to results from a traditional viscous-plastic sea ice model

- Motivation
- Model and Data
- Comparison
 - Dependence on model resolution
 - Exponential scaling of sea ice deformation
 - Dependence on model sea ice strength formulation
- Conclusions

Motivation (1)

Sea ice deformation in the Arctic climate system:

- Divergence creates open water → new ice growth in winter
- Convergence creates pressure ridges → thicker ice
- Controls heat and moisture fluxes to the atmosphere and brine rejection to the ocean
- Alters the air and water drag coefficients
- → Correct modeling of sea ice kinematics important for sea ice mass balance and ocean – air energy fluxes

Motivation (2)

Sea ice model evaluation with ice deformation fields:

- Even simple models with wrong sea ice physics can simulate the mean sea ice velocity field correctly [e.g. Rampal et al., 2009].
- Comparisons with first order mean velocity fields therefore not sufficient. Second order sea ice deformation should be used.
- Tuning a traditional Hibler-type viscous-plastic sea ice model with elliptical yield curve
 - Sea ice deformation field is not represented correctly in all details
 - But it is widely used in climate research.
- → Tune model to best represent observed sea ice kinematics

RGPS Satellite Data

- RADARSAT Synthetic Aperture Radar (SAR) data
- Same region covered approx. every 3 days
- Spatial cross-correlation of patterns → ice movement

ECCO2 Coupled Sea Ice-Ocean Model

Regional Arctic solution:

ECCO2: High-resolution global ocean and sea ice model constrained by least squares fit to available satellite and insitu data (Green's function approach).

Ocean model

- 50 vertical levels, volume-conserving, C-grid
- Surface boundary conditions: JRA-25
- Initial conditions: WOA05

Sea ice model

- 2-category zero-layer thermodynamics [Hibler, 1980]
- Viscous plastic dynamics [Hibler, 1979]
- Initial conditions: Polar Science Center
- Snow simulation: [Zhang et al., 1998]

Regional Arctic solution

- 4.5, 9 and 18 km horizontal grid spacing.
- Boundary conditions from global solution.
- Bathymetry: IBCAO
- Time: 1992 2009 (18 years)

Model Performance

Sea ice minimum 2007

- Model is doing well in terms of sea ice extent but is tuned to do so ©
- Changes in ice volume are comparable to observed ones using ICESat data (Kwok et al., 2009)

Trend in sea ice volume (1992-2009)

Sea Ice Speed

Trend sea ice speed

Model 1992-2008:

0.028 km/d/a

Buoy 1979-2007 (Rampal et al., 2009):

0.15

0.05

-0.05

-0.15

0.056 ± 0.011 km/d/a

- Buoy observations and model show increase in mean sea ice speed
- Increase in speed is higher for buoys but different regions and periods are considered
- Strongest increase in west Beaufort
 Sea and Transpolar Drift

- Sea ice deformation parameters: divergence, vorticity and shear
- •Example: November 1997 black line: perennial ice

Alaska

RGPS and Model Sea Ice Deformation

RGPS - Sea ice deformation parameters: **RGP** Russia divergence, vorticity and shear

- Example: November 1997 black line: perennial ice
- Number and distribution of linear kinematic features (LKF) improve with increasing model grid resolution.

-0.005

-0.01

Spatial Scaling of Deformation Rate

Deformation rate D;

$$D = \sqrt{\text{div}^2 + \text{shear}^2}$$

- The absolute amount of deformation D depends exponentially on the spatial scale L over which it is measured.
- From RGPS observations (Stern & Lindsay, 2009):

$$D \approx dL^b$$

 $b = -0.2$ (winter)
 $b = -0.3$ (summer)
 d : base deformation rate

-0.35

1996

1998

2000

2002

Year

2004

2006

Deformation Rate From Model

- a) Original deformation $D=\sqrt{\text{div}^2+\text{shear}^2}$ for three model resolutions (18, 9 and 4.5 km).
- b) Scaled deformation d with power law scaling parameters b = -0.2 (winter) and -0.3 (summer) for RGPS data (Stern & Lindsay, 2009).
- c) Scaled deformation d with power law scaling parameters b = -0.54 found by least square fit of three model resolutions.

Scale factor vs. ice concentration

- In the model the power law scaling factor b strongly depends on the ice concentration range used.
- For an ice concentration cut off of 80% or for only multiyear ice b becomes similar to the observed RGPS scaling factor (-0.2).
- RGPS data is only obtained in high ice concentration regions
- However, also for RGPS the changing fraction of open water could be responsible for most of the observed variability of the scaling factor (in theory b should be -0.67 for free drift).
- In the model the power law scale dependence for high ice concentrations is small (b > -0.1)

Fractional Number of Deformed Cells

- Due to the complex scaling dependence of the deformation rate the absolute deformation can not compared directly for different resolutions
- Using the fractional number of times a grid cell was deformed (div > 0.02/day OR shear > 0.03/day) during a given period for comparisons.

Ice Pressure (Strength)

Sea ice pressure formulation: $P_{max} = P^* h^n e^{[C^*(1-a)]}$

$$P_{max} = P^* h^n e^{[C^*(1-a)]}$$

h: ice thickness, $C^* = -20$

a: ice concentration

Control parameterization:

Test parameterization:

Test – Control Difference

- Difference in fract. number of deformed cells and velocity:
 Test Control ice strength formulation
- → More deformed cells, especially in seasonal ice zone.
- → higher ice velocity in seasonal ice zone.

Time Series of Deformed Cells

2003-05

2004-12

2006-08

Time series of deformed cells 1996-2008 (only two summers).

Difference RGPS-ECCO2							
	mean [%]			st.	dev.	СО	rr.
	all	MY	FY	all		all	
18km control	4.3	3.0	7.0		8.4	0.	86
18km test	0.3	0.6	1.3		5.7	0.	88
9km control	4.2	2.5	7.5		8.3	0.	86
9km test	-0.1	-0.4	1.0		5.9	0.	90
All: 58 months MY, FY: 26 months							

→ New ice pressure formulation improves ice deformation distribution independent of model resolution.

RGPS – control

Conclusions

- Sea ice deformation fields from observed RGPS data and ECCO2 model results are different, especially for small scale deformations and linear kinematic features (LKF).
- → model physics seem to be inadequate for correct reproduction of some aspects of sea ice kinematics.
- Increase in model resolution produces more and stronger confined ice deformation features.
- The observed power law scaling of sea ice deformation can also be found in the model. However, the scaling exponent almost exclusively depends on the considered sea ice concentration range.
- By changing the model sea ice strength formulation away from the linear dependence on ice thickness the modeled and observed deformation fields are getting more consistent.

Conclusions

- Sea ice deformation fields from observed RGPS data and ECCO2 model results are different, especially for small scale deformations and linear kinematic features (LKF).
- → model physics seem to be inadequate for correct reproduction of some aspects of sea ice kinematics.
- Increase in model resolution produces more and stronger con sformation for resolution produces.
- The observed power law scaling of sea ice determation can also be found in the model. However, the scaling exponent almost exclusively depends on the considered sea ice concentration range.
- By changing the model sea ice strength formulation away from the linear dependence on ice thickness the modeled and observed deformation fields are getting more consistent.